Introduction

Scenario

- Wireless communication
- More relays \rightarrow higher capacity
- Fewer relays \rightarrow lower costs
- Balance between capacity and cost

Problem Formulation

- When all relays work, the capacity reaches maximum (*global maximum* capacity). However, we don't have to apply all relays to reach global *maximum capacity*
- *Global network*: the subnetworks that reach *global maximum capacity*
- Global optimal network: the global network with fewest relays
- Problem: how to find global optimal network efficiently?

Existing Studies

- No directly related work found
- Calculation of capacity: [1] utilizes the submodularity property of the cut function and [2] proposes a method using dynamic programming approach
- Selection of relays: [2] applied simulated annealing approach, while [3] approximates the problem as a non-linear optimization problem
- Methods of existing studies are **time-consuming** for this problem

Objectives

Theory

- Explore structural characteristics of *global network*
- Design an explicit criterion to decide the *global optimal network*

Practice

- Develop efficient algorithms to obtain the *global optimal network*
- Efficiently obtain the new result when parameters change

Structure

- Layered Gaussian relay network
- Start from source *s* to destination *d*
- *L* layers, with K_{ℓ} nodes in the ℓ th layer
- Every edge has a channel gain $H_{i,i}^{\ell}$
- $Y_j^{\ell+1} = \sum_{i=1}^{K_\ell} H_{i,j}^l X_i^\ell + Z_j^{\ell+1}, Z_j^{\ell+1}$ is i.i.d. $\mathcal{CN}(0,1)$

Capacity

- *Cut* Ω : a subset of the network that satisfies $s \in \Omega$, $d \in \overline{\Omega}$
- Approximate the cutset upper bound as the capacity
- For a given network \mathcal{M} , its capacity can be calculated as

$C_{\mathcal{M}} = \min_{\Omega} \log \det \left(\mathbf{I} + \mathbf{H}_{\Omega} \mathbf{H}_{\Omega}^{\dagger} \right)$

where \mathbf{H}_{Ω} denotes the MIMO channel matrix from nodes in Ω to nodes in $\overline{\Omega}$

• Use the characteristic of hierarchy, the equation can be reformulated as

 $C_{\mathcal{M}} = \min_{\{\Omega\}} \sum \log \det \left(\mathbf{I} + \mathbf{H}_{\Omega}^{\ell} \mathbf{H}_{\Omega}^{\ell\dagger}\right)$

where $\mathbf{H}_{\Omega}^{\ell}$ denotes the MIMO channel matrix from nodes $\Omega \cap \mathcal{V}_{\ell-1}$ to nodes in $\overline{\Omega} \cap \mathcal{V}_{\ell}$

How to Efficiently Reach Largest Capacity with Fewest Relays?

- Necessity

Time complexity

Accuracy

- and K

- Performs better when *K* is
- large
- In the worst case, can reach
- 80% of the global maximum

- network

Implementation

1245. IEEE, 2014.

Results

Environment

• Individual channel gains were chosen to be i.i.d. according to $10\log_{10}\left(\left|H_{i,j}^{\ell}\right|^{2}\right) \sim U[0,35], \angle H_{i,j}^{\ell} \sim U[0,2\pi]$ • Test under MATLAB for Mac R2015b

• When K and L grows, the effect becomes more significant When K = 8 and L = 12, near **70%** of the nodes can be saved • In the network with large scale, only a fraction of nodes is needed to achieve *global maximum capacity*

• Compare the time complexity between dynamic programming approach and exhaustive search approach • With *L* (number of layers) and *K*(number of nodes in each middle layer) growing, the **acceleration multiple** grows **exponentially**

Table: Acceleration multiple of dynamic programming approach

	L = 3	L = 4	L = 5	L = 6
K = 1	0.96	1.01	1.02	0.97
K = 2	2.25	4.82	8.66	23.99
K = 3	4.32	9.12	53.12	363.09
K = 4	4.22	25.07	273.83	4910.98

• Test the cases of different *L*

• Generally can reach global maximum capacity with probability **0.8**

 $\land 0.9$ 0.8

Conclusions

Network Properties

• We proposed and proved several properties of layered Gaussian relay

• We strictly proved an theorem, which provides an **explicit criterion** to decide the *global optimal network*, not necessary to calculate through the whole network

We designed an efficient algorithm that utilizes dynamic programming approach and network properties which can **speed up** the solution exponentially

We took advantage of the layered characteristic of the algorithm, and proposed methods that can calculate the new result efficiently (warm start) when parameters change

References

[1] F. Parvaresh and R. H. Etkin, "Efficient capacity computation and power optimization for relay networks," CoRR, vol. abs/1111.4244, 2011.

[2] Ritesh Kolte and Ayfer Özgür. Fast near-optimal subnetwork selection in layered relay networks. In Communication, Control, and Computing (Allerton), 2014 52nd Annual Allerton Conference on, pages 1238-

[3] Siddhartha Brahma, Ayan Sengupta, and Christina Fragouli. Efficient subnetwork selection in relay networks. In 2014 IEEE International Symposium on Information Theory, pages 1927–1931. Ieee, 2014.